Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Microbiol ; 15: 1380912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655090

RESUMO

Background: There is growing evidence of associations between the gut microbiota and anxiety disorders, where changes in gut microbiotas may affect brain function and behavior via the microbiota-gut-brain axis. However, population-level studies offering a higher level of evidence for causality are lacking. Our aim was to investigate the specific gut microbiota and associated metabolites that are closely related to anxiety disorders to provide mechanistic insights and novel management perspectives for anxiety disorders. Method: This study used summary-level data from publicly available Genome-Wide Association Studies (GWAS) for 119 bacterial genera and the phenotype "All anxiety disorders" to reveal the causal effects of gut microbiota on anxiety disorders and identify specific bacterial genera associated with anxiety disorders. A two-sample, bidirectional Mendelian randomization (MR) design was deployed, followed by comprehensive sensitivity analyses to validate the robustness of results. We further conducted multivariable MR (MVMR) analysis to investigate the potential impact of neurotransmitter-associated metabolites, bacteria-associated dietary patterns, drug use or alcohol consumption, and lifestyle factors such as smoking and physical activity on the observed associations. Results: Bidirectional MR analysis identified three bacterial genera causally related to anxiety disorders: the genus Eubacterium nodatum group and genus Ruminococcaceae UCG011 were protective, while the genus Ruminococcaceae UCG011 was associated with an increased risk of anxiety disorders. Further MVMR suggested that a metabolite-dependent mechanism, primarily driven by tryptophan, tyrosine, phenylalanine, glycine and cortisol, which is consistent with previous research findings, probably played a significant role in mediating the effects of these bacterial genera to anxiety disorders. Furthermore, modifying dietary pattern such as salt, sugar and processed meat intake, and adjusting smoking state and physical activity levels, appears to be the effective approaches for targeting specific gut microbiota to manage anxiety disorders. Conclusion: Our findings offer potential avenues for developing precise and effective management approaches for anxiety disorders by targeting specific gut microbiota and associated metabolites.

2.
Acta Neurochir (Wien) ; 166(1): 140, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491189

RESUMO

OBJECTIVE: Tuberculum sellae meningiomas (TSMs) usually compress the optic nerve and optic chiasma, thus affecting vision. Surgery is an effective means to remove tumors and improve visual outcomes. On a larger scale, this study attempted to further explore and confirm the factors related to postoperative visual outcomes to guide the treatment of TSMs. METHODS: Data were obtained from 208 patients with TSMs who underwent surgery at our institution between January 2010 and August 2022. Demographics, ophthalmologic examination results, imaging data, extent of resection, radiotherapy status, and surgical approaches were included in the analysis. Univariate and multivariate logistic regressions were used to assess the factors that could lead to favorable visual outcomes. RESULTS: The median follow-up duration was 63 months, and gross total resection (GTR) was achieved in 174 (83.7%) patients. According to our multivariate logistic regression analysis, age < 60 years (odds ratio [OR] = 0.310; P = 0.007), duration of preoperative visual symptoms (DPVS) < 10 months (OR = 0.495; P = 0.039), tumor size ≤ 27 mm (OR = 0.337; P = 0.002), GTR (OR = 3.834; P = 0.006), and a tumor vertical-to-horizontal dimensional ratio < 1 (OR = 2.593; P = 0.006) were found to be significant independent predictors of favorable visual outcomes. CONCLUSION: Age, DPVS, tumor size, GTR, and the tumor vertical-to-horizontal dimensional ratio were found to be powerful predictors of favorable visual outcomes. This study may help guide decisions regarding the treatment of TSMs.


Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias da Base do Crânio , Humanos , Pessoa de Meia-Idade , Meningioma/complicações , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Neoplasias Meníngeas/complicações , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Resultado do Tratamento , Sela Túrcica/diagnóstico por imagem , Sela Túrcica/cirurgia , Sela Túrcica/patologia , Procedimentos Neurocirúrgicos/métodos , Neoplasias da Base do Crânio/cirurgia , Estudos Retrospectivos
3.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370768

RESUMO

To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights: BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.

4.
J Org Chem ; 88(24): 17249-17256, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058173

RESUMO

Photoinduced decarbonylative C-C bond formation with readily accessible aldehydes as alkyl sources is described. This protocol provides a sustainable alternative for the effective construction of diverse valuable 4-alkylated sulfonyl ketimines under metal- and photosensitizer-free conditions. Significantly, in this reaction, air serves as the green oxidant, and cyclic sulfamidate imines play a dual role of substrate and photocatalyst, thus affording a concise reaction system for C-H alkylation of cyclic sulfamidate imines.

5.
Front Psychol ; 14: 1093653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891211

RESUMO

The retrieval practice effect refers to the fact that one or even multiple retrievals of memory content during the same period are more effective than repeated studying to promote future memory retention. It is effective for numerous declarative knowledge learning materials. However, studies have demonstrated that retrieval practice does not benefit problem-solving skill learning. This study used worked examples from math word problem tasks as learning materials, considering the retrieval difficulty as the main factor. Experiment 1 explored the effect of retrieval practice on acquiring problem-solving skills under different initial testing difficulties. Experiment 2 manipulated the difficulty of materials as a variable to ascertain the effect of retrieval practice on problem-solving skills under different material difficulty levels. Experiment 3 introduced feedback variables to facilitate the generation of the retrieval practice effect and examined the effects of various difficulty feedback levels on problem-solving skills learning. Results showed that, compared with restudying examples (SSSS), the example-problem pairs (STST) did not promote delayed test performance. As for the retrieval practice effect, as no differences or advantages were found in the repeated study group on the immediate test, the retrieval practice group generally outperformed the repeated study group on the delayed test. However, across the three experiments, we found no evidence of retrieval practice affecting results during an enhanced delayed test. Therefore, there may be no retrieval practice effect on acquiring problem-solving skills from worked examples.

6.
J Cardiovasc Dev Dis ; 9(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547439

RESUMO

Endocardium lines the inner layer of the heart ventricle and serves as the source of valve endothelial cells and interstitial cells. Previously, endocardium-associated abnormalities in hypoplastic left heart syndrome (HLHS) have been reported, including endocardial fibroelastosis (EFE) and mitral and aortic valve malformation. However, few mechanistic studies have investigated the molecular pathological changes in endocardial cells. Recently, the emergence of a powerful in vitro system-induced pluripotent stem cells (iPSCs)-was applied to study various genetic diseases, including HLHS. This review summarized current in vitro studies in understanding the endocardial pathology in HLHS, emphasizing new findings of the cellular phenotypes and underlying molecular mechanisms. Lastly, a future perspective is provided regarding the better recapitulation of endocardial phenotypes in a dish.

8.
Int J Oncol ; 61(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35894143

RESUMO

Cancer cells rewire their metabolism to meet the demands of growth and survival and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. However, the respective mechanisms remain elusive and the contribution of aberrant lipid metabolism to the malignant phenotypes of glioma are unclear. The present study demonstrated that glial­derived neurotrophic factor (GDNF) is highly expressed in glioma and associated with poor clinical outcomes. In addition, there was a significant correlation between GDNF/rearranged during transfection (RET)/ERK signaling and sterol regulatory element­binding protein­1 (SREBP­1) expression in glioma cells. Pharmacological or genetic inhibition of GDNF­induced RET/ERK activity downregulated SREBP­1 expression and SREBP­1­mediated transcription of lipogenic genes. Additionally, GDNF regulated SREBP­1 activity by promoting hypoxia­inducible factor­1α (HIF­1α) mediated glucose absorption and hexosamine biosynthetic pathway mediated SREBP cleavage­activating protein N­glycosylation. In addition, the inhibition of SREBP­1 reduced the in vitro GDNF­induced glioma cell proliferation. The results elucidated the complex relationship between GDNF/RET/ERK signaling and dysregulated glycolipid­metabolism, which shows great potential to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Glioma , Metabolismo dos Lipídeos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
Curr Cardiol Rep ; 24(5): 463-471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218503

RESUMO

PURPOSE OF REVIEW: Given a general lack of emphasis on the molecular underpinnings of single ventricle (SV) congenital heart diseases (CHD), our review highlights and summarizes recent advances in uncovering the genetic and molecular mechanisms in SV CHD etiology. RECENT FINDINGS: While common SV-associated genetic mutations were found in key cardiac transcription factors, other mutations were sporadic. With advances in genetic sequencing technologies and animal models, more disease-associated factors have been identified to act in critical cardiac signaling pathways such as NOTCH, Wnt, and TGF signaling. Recent studies have also revealed that different cardiac lineages play different roles in disease pathogenesis. SV defects are attributed to complex combinations of genetic mutations, indicating that sophisticated spatiotemporal regulation of gene transcription networks and functional cellular pathways govern disease progression. Future studies will warrant in-depth investigations into better understanding how different genetic factors converge to influence common downstream cellular pathways, resulting in SV abnormalities.


Assuntos
Cardiopatias Congênitas , Cardiopatias Congênitas/genética , Ventrículos do Coração/anormalidades , Humanos
11.
Cancer Cell Int ; 20: 518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117083

RESUMO

BACKGROUND: Glioma is the most frequent and lethal primary brain malignancy. Amounting evidence has highlighted the importance of exosomal microRNAs (miRNAs or miRs) in this malignancy. This study aimed to investigate the regulatory role of exosomal miR-148a-3p in glioma. METHODS: Bioinformatics analysis was firstly used to predict the target genes of miR-148a-3p. Exosomes were then extracted from normal human astrocytes and glioma cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression patterns of miR-148a-3p and ERBB receptor feedback inhibitor 1 (ERRFI1). Dual-luciferase reporter gene assay was applied to verify the direct binding between miR-148a-3p and ERRFI1. Cell counting kit-8 and tube formation assays were further conducted to assess the proliferation and angiogenic properties of human umbilical vein endothelial cells (HUVECs) in the co-culture system with exosomes. Lastly, glioma tumor models were established in BALB/c nude mice to study the role of exosomal miR-148a-3p in vivo. RESULTS: miR-148a-3p was highly expressed, while ERRFI1 was poorly expressed in glioma. miR-148a-3p was found to be enriched in glioma cells-derived exosomes and could be transferred to HUVECs via exosomes to promote their proliferation and angiogenesis. ERRFI1 was identified as a target gene of miR-148a-3p. In addition, miR-148a-3p activated the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting ERRFI1. In the co-culture system, our data demonstrated that glioma cells-derived exosomal miR-148a-3p down-regulated ERRFI1 and activated the EGFR/MAPK signaling pathway, so as to promote cell proliferation and angiogenesis. In vivo experimentation further demonstrated that this mechanism was responsible for the promotive role of exosomal miR-148a-3p in tumorigenesis and angiogenesis. CONCLUSION: Taken together, glioma-derived exosomal miR-148a-3p promoted tumor angiogenesis through activation of the EGFR/MAPK signaling pathway by ERRFI1 inhibition.

12.
Cancer Lett ; 428: 77-89, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705182

RESUMO

The introduction of temozolomide (TMZ) has improved chemotherapy for malignant gliomas. However, many gliomas are refractory to TMZ, so there is a pressing need for more effective therapeutic options. Here we demonstrated that glioma specimens and cell lines have constitutively high levels of nuclear factor κB (NF-κB) activity. Notably, the expression levels of this transcription factor correlated with malignant grades in glioblastoma multiforme (GBM) and inversely correlated with overall survival. Conversely, knockdown of NF-κB inhibits glioma cell proliferation and treating a panel of established glioma cell lines with pharmacological NF-κB inhibitors markedly decreased glioma viability, led to S cell cycle arrest, and induced apoptosis. We also found a significant correlation between NF-κB expression and O6-methylguanine-DNA methyltransferase (MGMT) expression in gliomas with different origins, and immunohistochemistry confirmed these findings. Genetic or pharmacological (especially parthenolide) inhibition of NF-κB activity down-regulated MGMT gene expression and substantially restored TMZ chemosensitivity in vitro and in vivo. Importantly, the TMZ sensitizing effect of siNF-κB(p65) or parthenolide were rescued by MGMT cDNA expression. These findings suggest that NF-κB is a potential target for inducing cell death in gliomas. A targeted combination strategy in which the response to TMZ is synergistically enhanced by the addition of parthenolide which may be useful, especially in chemoresistant gliomas with high MGMT expression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fator de Transcrição RelA/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos SCID , RNA Interferente Pequeno/metabolismo , Ratos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Lett ; 388: 12-20, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894954

RESUMO

NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor that shows dramatic effects on many tumors, but its effects on cervical carcinoma cells are largely unknown. In the present study, we investigated the effects of NVP-BEZ235 on the proliferation and invasion of cervical carcinoma cells in vitro and clarified its mechanism of action. In cellular settings with human cervical carcinoma cell lines, this molecule effectively and specifically blocked dysfunctional PI3K/mTOR pathway activation, suppressed cell growth in a time- and concentration-dependent manner, led to G1 cell cycle arrest, and induced apoptosis. NVP-BEZ235 suppressed HeLa cell invasiveness and metastasis by inhibiting the PI3K/Akt/MMP-2 pathway. We further demonstrated that NVP-BEZ235 treatment in combination with cisplatin or carboplatin induced a synergistic anti-tumoral response in cervical carcinoma cells. These findings suggested that NVP-BEZ235 could regulate growth and invasion of cervical carcinoma cells; thus it may provide a potential therapy for cervical carcinoma.


Assuntos
Imidazóis/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias do Colo do Útero/genética , Apoptose , Feminino , Humanos , Imidazóis/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico
14.
PLoS One ; 11(12): e0167094, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907160

RESUMO

AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Oligodesoxirribonucleotídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Análise de Sobrevida , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncol Lett ; 11(4): 2792-2800, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073554

RESUMO

Glioblastoma is the most common and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas, but it is not curative. The difficulties in treating glioblastoma may be as a result of the presence of glioma stem cells (GSCs), which are a source of relapse and chemoresistance. Another reason may be that endogenous Akt kinase activity may be activated in response to clinically relevant concentrations of TMZ. Akt activation is correlated with the increased tumorigenicity, invasiveness and stemness of cancer cells and overexpression of an active form of Akt increases glioma cell resistance to TMZ. Mounting evidence has demonstrated that cancer stem cells are preferentially sensitive to an inhibitor of Akt and down-regulation of the PI3K/Akt pathway may enhance the cytotoxicity of TMZ. Metformin (MET), the first-line drug for treating diabetes, it has been proved that it reduces AKT activation and selectively kills cancer stem cells, but whether it can potentiate the cytotoxicity of TMZ for GSCs remains unknown. In the present study, the GSCs isolated from human glioma cell line U87 and Rat glioma cell line C6, in vitro treatment with TMZ either alone or with MET. The present study demonstrates that MET acts synergistically with TMZ in inhibiting GSCs proliferation and generating the highest apoptotic rates when compared to either drug alone. These findings implicate that GSCs cytotoxicity mediated by TMZ may be stimulated by MET, have a synergistic effect, but the definite mechanisms remain elusive.

16.
Exp Ther Med ; 11(2): 371-380, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26893618

RESUMO

Glioblastoma (GBM) is the most common and devastating primary malignant intracranial tumor in adults. The current first-line treatment for patients with newly diagnosed GBM is surgical resection followed by radiotherapy plus concomitant and adjuvant temozolomide. This treatment protocol may prolong the survival period of the patient, however it is not curative and more effective therapeutic strategies are required. GBM is a type of highly vascularized tumor with increased expression levels of vascular endothelial growth factor (VEGF), which is a significant mediator of angiogenesis. Since angiogenesis is essential for tumor growth, anti-angiogenic therapies hold potential for the treatment of GBM, and targeting VEGF has demonstrated promising results in previous studies. Bevacizumab (BEV) is a recombinant humanized monoclonal antibody that inhibits VEGF and is approved by the US Food and Drug Administration as a monotherapy treatment for patients with recurrent GBM and is associated with manageable toxicity. Previous studies have demonstrated that BEV may be an effective treatment for recurrent GBM, with prolonged progression-free survival and overall survival, and maintained patient quality of life and functional status. The present review article briefly outlines the mechanism of action of BEV and summarizes the current literature and clinical trial research on the role of BEV for the treatment of patients with recurrent and newly diagnosed GBM.

17.
Oncol Lett ; 11(1): 283-286, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870204

RESUMO

Dumbbell-shaped hypoglossal Schwannomas of the 12th cranial nerve are extremely rare, and complete removal of these tumors is difficult, particularly in elderly patients with recurrent tumors. The present study reports the case of a 61-year-old male with a giant recurrent dumbbell-shaped hypoglossal schwannoma that arose extracranially. The recurrent tumor was completely removed in a one-stage surgical procedure via the far lateral suboccipital approach in combination with the transcervical approach. To the best of our knowledge, such a lesion has not been reported previously. The life expectancy and natural course of the disease are important factors to take into account when considering the individual end-point of surgery in patients. More studies on hypoglossal schwannomas are required, particularly cases in which the hypoglossal schwannoma was not totally resected, not only in order to develop more definitive and secure surgical treatments, but also to reduce the resultant unnecessary suffering of patients.

18.
Oncotarget ; 7(12): 14925-39, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26908447

RESUMO

Interference with telomerase and telomere maintenance is emerging as an attractive target for anticancer therapies. Ligand-induced stabilization of G-quadruplex formation by the telomeric DNA 3'-overhang inhibits telomerase from catalyzing telomeric DNA synthesis and from capping telomeric ends, making these ligands good candidates for chemotherapeutic purposes. BRACO-19 is one of the most effective and specific ligand for telomeric G4. It is shown here that BRACO-19 suppresses proliferation and reduces telomerase activity in human glioblastoma cells, paralleled by the displacement of telomerase from nuclear to cytoplasm. Meanwhile, BRACO-19 triggers extensive DNA damage response at telomere, which may result from uncapping and disassembly of telomeric T-loop structure, characterized by the formation of anaphase bridge and telomere fusion, as well as the release of telomere-binding protein from telomere. The resulting dysfunctional telomere ultimately provokes p53 and p21-mediated cell cycle arrest, apoptosis and senescence. Notably, normal primary astrocytes do not respond to the treatment of BRACO-19, suggesting the agent's good selectivity for cancer cells. These results reinforce the notion that G-quadruplex binding compounds can act as broad inhibitors of telomere-related processes and have potential as selective antineoplastic drugs for various tumors including malignant gliomas.


Assuntos
Acridinas/farmacologia , Citostáticos/farmacologia , Quadruplex G/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Telomerase/antagonistas & inibidores , Telômero/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Humanos , Telomerase/genética , Telômero/genética , Células Tumorais Cultivadas
19.
J Craniofac Surg ; 26(8): 2421-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26594972

RESUMO

PURPOSE: This study aims to provide an anatomic data of posterior communicating artery (PComA) and its anatomic relationship to the adjacent structures, so as to guide surgeons in the surgery of internal carotid artery-posterior communicating artery aneurysm clipping and sellar tumors resection without injuring the PComA. METHODS: Computer topographic angiography images of 123 individuals were reviewed, and the measurements were done on coronal, sagittal, axial, and other user-defined planes after multiplanar reconstruction. Posterior communicating artery was classified in the reconstructed three-dimensional image, measured in proper planes, and located by the structures such as anterior clinoid process (ACP), posterior clinoid process (PCP), and sagittal midline. RESULTS: Six types of PComA were identified in this study based on its existence and origin. The initial part of PComA can be located by ACP, PCP, and sagittal midline based on some particular angles and distances. CONCLUSIONS: Posterior communicating artery varies in different individuals, and the radiologic study of it is an optimal way to analyze the variances. The anatomic relations between PComA and basic skull structures such as the ACP and PCP are especially important for neurosurgeons.


Assuntos
Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/cirurgia , Sela Túrcica/diagnóstico por imagem , Sela Túrcica/cirurgia , Tomografia Computadorizada Espiral/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiografia Cerebral/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Oncotarget ; 6(32): 32930-43, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26431379

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. The fast recurrence and multi-drug resistance are some of the key challenges in combating brain tumors. Glioma stem cells (GSCs) which are considered the source of relapse and chemoresistance, the need for more effective therapeutic options is overwhelming. In our present work, we found that combined treatment with temozolomide (TMZ) and metformin (MET) synergistically inhibited proliferation and induced apoptosis in both glioma cells and GSCs. Combination of TMZ and MET significantly reduced the secondary gliosphere formation and expansion of GSCs. We first demonstrated that MET effectively inhibited the AKT activation induced by TMZ, and a combination of both drugs led to enhanced reduction of mTOR, 4EBP1 and S6K phosphorylation. In addition, the combination of the two drugs was accompanied with a powerful AMP-activated protein kinase (AMPK) activation, while this pathway is not determinant. Xenografts performed in nude mice demonstrate in vivo demonstrated that combined treatment significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. In conclusion, TMZ in combination with MET synergistically inhibits the GSCs proliferation through downregulation of AKT-mTOR signaling pathway. The combined treatment of two drugs inhibits GSCs self-renewal capability and partly eliminates GSCs in vitro and in vivo. This combined treatment could be a promising option for patients with advanced GBM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Metformina/farmacologia , Animais , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Sinergismo Farmacológico , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...